Instructions for Checking your Typeset Proof

This document contains information to assist you in checking your typeset proof. Included in this document are the following information and sections:

1. Preliminaries: Replying to us, multi authored papers, bibliographical details
2. Checklist for Reviewing the Typeset Proof (what to check)
3. Journal Standard Style (order of your paper and the standard style of the Journal)
4. Documenting your Corrections (how to document a request for corrections)

1. Preliminaries

Repeating to us
After you review the typeset proof, you need to click on the ‘Author Verify Typeset Proof’ button (available at the link you downloaded the typeset proof from). You will then need to select the appropriate option to proceed.

Option 1: Accept Typeset Proof
To be selected when your paper is ready for publication
- Please thoroughly check the typeset proof before accepting it. You will not have further opportunities to make additional changes after the typeset proof has been accepted.
- Once you have accepted the typeset proof of your paper it will be ready to be published. You will be notified when your paper has been published and given instructions on how to access the published version.

Option 2: Request Resubmission of Typeset Proof
To be selected when your paper requires corrections
- Please see section on ‘Documenting your Corrections’.
- The typesetter will receive notification of your requested corrections. Once the corrections have been completed you will be notified of the availability of a revised typeset proof for your approval.

Multi-Authored Papers
In the case of multi-authored papers, authors are advised to collaborate when checking the typeset proof. One author should be nominated to either accept or submit corrections on behalf of all of the authors of the paper.
We can only accept one set of revisions, or one acceptance of the typeset proof, from the nominated author. Once an author approves the typeset proof further revisions may not be requested.

Bibliographical Details
Please note that full bibliographical details (issue and page numbers) will not be available until final publication of your paper. Once your paper has been published you will be able to obtain these details. We will notify you as soon as your paper is published.
2. Checklist for Reviewing the Typeset Proof

We recommend that you print the typeset proof and proofread it slowly and with great care. Request that a colleague also proofread your paper as they may notice errors that you may miss due to your familiarity with the content.

Remember to check your typeset proof for:
- Completeness: inclusion of all text, figures, illustrations and tables
- Correct title and subtitle
- Correct authorship and order of authors
- Current affiliation details
- Heading levels
- Position and size of illustrations and figures
- Matching of captions to illustrations and figures
- Position of tables
- Presentation of quotes
- Presentation of equations
- Footnotes and footnote numbering
- Inclusion of acknowledgements
- References and reference style
- Typesetting or conversion errors

Please check the Journal Standard Style prior to requesting changes to style as we adhere to standard presentation requirements for all papers to ensure consistency throughout the Journal.

It is important that all of your corrections (and those of your co-authors if applicable) are submitted to us in one communication.

Please note that careful proofreading is solely your responsibility.
3. Journal Standard Style

Order of the Paper:
1. Cover page
2. Copyright/imprint page
3. Paper: title/subtitle; author names with affiliation; abstract; keywords; body of paper; acknowledgement (if applicable); reference list; appendix (if any); about the author section
4. Journal colophon

Journal Standard Style:
- Paper title/subtitle and all headings appear in Title Case whereby only definite and indefinite articles (e.g. ‘the’ and ‘a’), conjunctions (e.g. ‘and’), and prepositions (e.g. ‘in’, ‘of’ etc.) appear in lower case.
- No italics in titles and subtitles.
- Affiliation of the author will include only the name of the author, university or organization name, state (if applicable) and country. Honorifics are not included.
- Abstract will appear in italics as a single paragraph.
- No italics included in the keyword list.
- No footnotes attached to title/subtitle, authors or the abstract.
- The first paragraph of the paper will appear in floating style - first three words appear in capital case and bold.
- Footnotes within tables have separate numbering to that of the footnotes within the paper.
- Hyphenation cannot be altered.
- No underline will be included.
- Figure captions are centred below the figure. The figure number and caption appear on the same line.
- Table titles appear above the table, left justified, in bold. The table number and table title appear on the same line.
- Flow of columns: If a figure or table appears in the middle of the page then the flow of the text will be from top left column to top right column, followed by table or figure. The remaining text will begin in the left column under the figure/table and will continue in the bottom right column.
- About the Author section: The honorific will reflect in this section. Contact details such as email addresses will not be included.
4. Documenting your Corrections

Changes to the Abstract
If you wish to make changes to the abstract of your paper please provide the revised abstract either as a Word document (if there are also changes to the text), or by entering it in the text box provided when you select Option 2.

Additional Authors
If you need to add a co-author we require the following information for each additional author to be added:
1. Name of the co-author
2. Affiliation details
3. Email address of the co-author (Mandatory)
4. Short Biography (limit of 30 words)
5. Long Biography (limit of 200 words one paragraph only)

Corrections to Text
If you have changes to the text please complete these in the Word version of your paper available at the link where you downloaded this PDF (or an existing word version). You can then upload the revised document for typesetting by selecting Option 2.

Corrections to Style:
You will need to clearly indicate all corrections in the following manner:

1. Page Number - paragraph number - line number - correction to be made
2. Page 4 - last paragraph, please set as a quote from the sentence starting ‘Tom, Mary and Jane…’

The page number is the actual page of the PDF. As the paper has not been paginated yet, no numbers appear on the pages.

Submitting Corrections
Click the ‘Author Verify Typeset Proof’ button (available at the link you downloaded the typeset proof from) and select Option 2.

Option 2: Request Resubmission of Typeset Proof
- Please upload the corrected Word document, or add your instructions for corrections in the text box provided
- Note that you can only upload one document, and this document must contain all of the corrections (and those of your co-authors if applicable).

The typesetter will receive notification of your requested corrections. Once the corrections have been completed you will be notified of the availability of a revised typeset proof for your approval.
The Relationship between UPSI Lecturers' Perceptions of their Teaching Practices and Students' Conceptions of Force and Motion

Nurulhuda Abd Rahman, Jaafar Jantan, Shahrul Kadri Ayop, Mohd Mustamam Abd Karim, Noor Azman Razalee, Roszairi Haron, Abu Bakar Rejab
The Relationship between UPSI Lecturers' Perceptions of their Teaching Practices and Students' Conceptions of Force and Motion

Nurulhuda Abd Rahman, Universiti Pendidikan Sultan Idris, Perak, Malaysia
Jaafar Jantan, Universiti Teknologi Mara, Shah Alam, Malaysia
Shahrul Kadri Ayop, Universiti Pendidikan Sultan Idris, Malaysia
Mohd Mustamam Abd Karim, Universiti Pendidikan Sultan Idris, Malaysia
Noor Azman Razalee, Universiti Pendidikan Sultan Idris, Malaysia
Roszairi Haron, Universiti Pendidikan Sultan Idris, Malaysia
Abu Bakar Rejab, Universiti Pendidikan Sultan Idris, Malaysia

Abstract: This research investigated the effect of instruction on student teachers' understanding of force and motion. Lecturers' perceptions of their teaching practices during lecture session provided data on how lecture was conducted and this was then compared to students' understanding. Students' understanding was also compared to their demographic variables such as gender and academic performance. 347 students from diverse groups and 5 lecturers participated in the study. Results show that student teachers at UPSI hold strong Aristotelian beliefs about force and motion which are not in line with the currently accepted scientific beliefs. It also suggests that traditional instruction had little effect on changing the students' beliefs. In addition, lecturers perceived their teaching practices as traditional 'chalk-and-talk' where students sit passively in lecture halls with minimal interactivity. The study also found that there is no significant relationship between students' scientific beliefs and their gender or academic performance.

Keywords: Student Learning Difficulties, Physics Instruction Teacher Education, Higher Education, Teacher Perception

Introduction

One of the knowledge bases and skills that a teacher must possess is a deep understanding of the subject matter. It is assumed that students will acquire sufficient content knowledge as they go through subject specific courses throughout their attendance at a university. However, numerous research (e.g. Clement, 1982; Watts, 1983; McDermott, 1984) have shown that students and teachers alike have difficulty understanding the concept of force and motion as they are plagued with preconceptions (commonly known as misconceptions or alternative conceptions) that are usually Aristotelian beliefs rather than the accepted scientific conceptions. Teacher-centered method of teaching that is so common in schools has also been blamed for the problem which remains unresolved as the students enrolled at higher learning institutions. This study looks at the effect of instruction on students’ understanding of the force and motion concept in Newtonian mechanics. Students are prospective teachers studying at Universiti Pendidikan Sultan Idris (UPSI), which is a national education university in Malaysia. They come from diverse backgrounds whilst the courses they are taking are widely varied in terms of the content including the breadth and depth of the mechanics topics taught. The study also includes students’ academic performance and gender as two other factors that may influence students’ understanding.

Research Context

Physics has always been taught quantitatively with too many facts, equations and numbers (Hobart, 1966; Rigden, 1987). Furthermore, the introductory physics courses have been structured to include so much content to be covered in a short period (French, 1988). A traditional didactic style of teaching then would be the most logically appropriate style to deliver such a mile-wide content within a short period of time. Using this fast-paced teaching strategy, students usually resort to memorizing facts and equations. However over-dependence on memorization is counterproductive (Whitaker, 1985) and may impede meaningful learning. Several investigators have carefully documented college physics students understanding of a variety of topics and have concluded that traditionally taught courses do little to improve students’ understanding of the central concepts of physics, even if the students successfully learn problem-solving algorithms
In addition, the problem of misconceptions or alternative framework further complicates the learning of physics fundamentals. Misconceptions are widely perceived as conceptions that are not totally in line with the currently accepted scientific conceptions and have the characteristics of being strongly held, very hard to overcome, and impede further learning. Numerous studies (McDermott, 1984; Finegold and Gorsky, 1991) have shown that students come into a physics course not as blank slates but bring with them common sense beliefs and intuitions (i.e. misconceptions) about how the world works, which they derived from extensive personal experiences. Traditional instruction does little to resolve these misconceptions and they may be the major source of difficulty in understanding physics fundamentals.

Simultaneously, research have also established that students develop complex reasoning skills most effectively when actively engaged with the material they are studying and have found that collaborative activities are an excellent way to engage students effectively (Johnson and Johnson, 1987; Johnson, Johnson and Smith, 1991). A major study by Hake (1998) involving more than six-thousand students across the United States of America found that physics courses where students are actively involved in discussion, discovery and/or analysis of material are more effective in terms of promoting students conceptual understanding and problem-solving skills than traditionally taught courses.

Methodology

This research aims to identify lecturers’ perceptions of their teaching practices during lecture session and students’ understanding of force and motion and investigate the relationship between the two variables. It also aims to compare students’ beliefs with their demographic variables such as gender and academic performance. It employs survey and correlational design using a questionnaire for identifying the lecturers’ perception of their teaching practices and pre and post-test for determining students’ level of understanding of force and motion.

The Instruments

Students’ understanding of force and motion was assessed using the standardized revised Force Concept Inventory (FCI) test developed by Hestenes, Wells and Swackhamer (1992). The revised version (Halloun, Hake, Mosca and Hestenes 1995) was translated into the Malay language by one of the authors. The test can be downloaded from http://modeling.asu.edu/R&E/Research.html or alternatively from http://www3.uitm.edu.my/staff/drijj/ but is password protected to protect the integrity of the test. FCI is a multiple-choice test designed to assess students’ conceptual understanding of the most basic concepts in Newtonian physics and as such does not require mathematical operations or calculations. The FCI is structured to require a forced choice between Newtonian’s concepts and commonsense beliefs or misconceptions (see for example Hestenes et al 1992, Mazur 1997, Hake 1998, Savinainen and Scott 2002). Hence the inventory data can provide a picture of the status of students’ conceptions and/or misconceptions of fundamentals. The test contains 30 questions related to specific concepts and laws of classical mechanics. In order to further distinguish between a lack of knowledge and a misconception, a Certainty of Response Index (CRI) is utilized in conjunction with the answers as first introduced by Hasan, Bagayoko and Kelley (1999).

The CRI is based on a six-point scale (0-5) in which 0 implies no knowledge or a total guess for the answer selected. The CRI works on the assumption that if the degree of certainty is low (CRI of 0-2) then it suggests that students are mostly guessing and thus a wrong answer represents a state of a lack of knowledge rather than a misconception. On the other hand, a high degree of certainty (CRI of 3-5) associated with a wrong answer suggests that students hold a misconception or common sense beliefs. For the purpose of this research, a CRI mode value of 3 to 5 associated with an answer where 50% or more of the students answered incorrectly indicates the presence of misconceptions. In addition, since FCI has also been claimed as the “best test currently available… to evaluate the effectiveness of instruction in introductory physics courses” (Huffman and Heller, 1995), hence, FCI results (from courses where mechanics was taught) also indicate the effectiveness of instruction received by the students.

Instructional strategies employed by lecturers in this study was done by investigating lecturers’ perceptions of their teaching practices during lecture session by using the Teaching Practices Assessment Inventory (TPAI) adopted from Burry-Stock (1995a). It is one of five instruments (each addressing different aspect of science classroom teaching) which was developed based on the Expert Science Teaching Educational Evaluation Model (ESTEEM). Its main purpose is to assess the awareness level of science teachers with respect to constructivist teaching perspective. In this instrument, the lecturers were asked to give their perceptions of their own teaching practices based on the Likert scale from 1 to 5 of how often they perceived they used each behaviour during lecture sessions. There are a total of 30 items
on the instrument and selected sample items are shown in Table 1.

Table 1: Sample Items from the Teaching Practices Assessment Inventory (TPAI)

<table>
<thead>
<tr>
<th>Category 1: Facilitating the learning process</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Your students are responsible for their own learning experience (you are the facilitator of the learning experience)</td>
</tr>
<tr>
<td>• Your students are actively engaged in asking questions throughout class-time.</td>
</tr>
</tbody>
</table>

Category 2: Context-Specific Pedagogy

| • You and/or your students develop content materials. |
| • As student misconceptions become apparent, you facilitate student efforts to resolve them. |

Category 3: Content Experiences

| • Your class experiences have an appropriate balance between depth and breadth. |
| • You accurately present the information in your lessons. |

Category 4: Content-Specific Pedagogy

| • Your students have the opportunity to experience the relationship of concepts to their everyday lives. |
| • You allow students to establish concepts from evidence gathered during a lesson. |

The instrument with a Cronbach alpha of 0.93 has four subscales or categories which are (1) facilitating the learning process, (2) context-specific pedagogy, (3), content experiences and (4) content-specific pedagogy. Reviews from researchers and educators in science education and field testers (Burry-Stock 1995b) supported the validity of the instrument.

The Sample

Our sample included both students and lecturers. Student participants come from a diverse group of students who are enrolled in the undergraduate science education program for the July–Nov 2005 semester at Universiti Pendidikan Sultan Idris, Malaysia, a university for producing graduate school teachers. There were 347 participants which consists of 127 semester 1 students, (majoring in Physics and taking Fundamental Physics I course), 80 semester 5 and 6 students, (minor in Physics and taking Introductory Physics I course), 35 semester 3 students, (majoring in Physics and taking Introductory Mechanics course) and 103 semester 7 students, (majoring in Physics and taking Physics Teaching Methods course). Except for students enrolled in the Physics Teaching Methods course, the rest of the students studied the topic of Newtonian Mechanics in courses they enrolled in. However, the former group of students was directly involved with the problems of misconceptions in physics (with a focus on several specific problems from the Newtonian mechanics topic) through in-class discussion and literature search. Since these students are in their final year at the university, they have taken all of the required physics courses related to mechanics.

In addition to the students, five lecturers were also involved in the study. Lecturers and one of the authors were administered the TPAI at the end of their courses.

Bar graphs in Figure 1 show the percentages of lecturers and students who participated in the study.
Students took the test during the first week of the semester and were proctored by their respective lecturers teaching the course. The time allotted for the FCI test is 45 minutes. In addition to the test, students were given a profile sheet in gathering information about their personal and academic background. The students were given 15 minutes to fill-in the necessary information before they began answering the multiple-choice test. At the end of the session, the students' profile and answer sheets along with the tests were collected.

Data Analysis

Profile sheets that contained answers for the FCI test were numbered and each category on the profile were coded by using the Arab numerals. The profile, the codes for the categories and the answers that a student chose for each item on the test and their respective CRI score were keyed-in into a spreadsheet template of Microsoft Excel for Microsoft Office 97. The template was programmed to score each item on the test and provide the total score and the percentage for the test. It also calculated the mean and standard deviation for each item and the mean and standard deviation for each group of students according to their respective lecturers. In addition a quantity called the normalized gain, \(g \), defined as the fraction of the maximum possible gain realized (Hake, 1998),

\[
g = \frac{\text{Gain}}{\text{Maximum possible gain}} = \frac{\% \text{ posttest mean score} - \% \text{ pretest mean score}}{100\% - \% \text{ pretest mean score}}
\]

was used to gauge the extent to which the classroom instructions were effective. Hake (2000) argued that the normalized gain is more suitable (than actual gain or average post test score) to measure course effectiveness over diverse groups of students as empirical evidence shows that the correlation of the normalized gain, \(g \), with pre test scores is very low. In contrast there is a moderately negative correlation between actual gain (% post test - % pre test scores) and pre test score and also a moderate positive correlation between post test score and pre test score. Analysis on both the descriptive and inferential statistics were done by using Win SPSS , a statistical package for Windows.

For the TPAI, a profile for each lecturer is built by computing the percentage for each category. An overall percentage is computed by summing all of the category totals and dividing by 150. The more “5s” or “Almost Always” used, the higher the degree of constructivist approach was used during the lecture. Consequently the lecturer can consider him/herself an expert or constructivist lecturer. For
the purpose of this research an overall percentage of above 60% (which indicates an average score of 3 for each item) is taken as an indication that the lecturer has a constructivist tendency of teaching whilst a percentage of below 60% indicates a traditional tendency. The authors of TPAI also used the following scale (Table 2) as an approximation for estimating competency levels:

Table 2: Levels of Competence

<table>
<thead>
<tr>
<th>Percentages (%)</th>
<th>Competency Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-100</td>
<td>Expert</td>
</tr>
<tr>
<td>70-84</td>
<td>Proficient</td>
</tr>
<tr>
<td>35-69</td>
<td>Competent</td>
</tr>
<tr>
<td>15-34</td>
<td>Advanced Beginner</td>
</tr>
<tr>
<td>01-14</td>
<td>Novice</td>
</tr>
</tbody>
</table>

Results and Interpretation

Student teachers score an average of 23.6% with a standard deviation of 9.26% and 29.6% with a standard deviation of 10.52% on their pre and post test respectively. Table 3 shows the distribution of the FCI scores and gain according to the respective lecturers. It also shows each lecturer’s overall score on the TPAI.

Table 3: Distribution of FCI and TPAI Scores and the Respective Gains

<table>
<thead>
<tr>
<th>Lecturer & Course</th>
<th>N</th>
<th>% of sample</th>
<th>Pre (%)</th>
<th>Post (%)</th>
<th><g></th>
<th>TPAI Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Physics Teaching Methods, Sem 7 students)</td>
<td>103</td>
<td>29.7</td>
<td>Mean</td>
<td>27.25</td>
<td>31.20</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>9.59</td>
<td>10.04</td>
<td></td>
</tr>
<tr>
<td>B (Introductory Mechanics, Sem 3 students)</td>
<td>35</td>
<td>10.1</td>
<td>Mean</td>
<td>25.24</td>
<td>34.38</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>7.97</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>C (Fundamental Physics 1, Sem 1 students)</td>
<td>82</td>
<td>23.6</td>
<td>Mean</td>
<td>25.49</td>
<td>30.24</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>9.29</td>
<td>11.58</td>
<td></td>
</tr>
<tr>
<td>D (Introductory Physics 1, Sem. 5 & 6 minor students)</td>
<td>80</td>
<td>23.1</td>
<td>Mean</td>
<td>17.83</td>
<td>28.62</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>6.98</td>
<td>10.58</td>
<td></td>
</tr>
<tr>
<td>E (Introductory Physics 1, Sem. 5 & 6 minor students)</td>
<td>47</td>
<td>13.5</td>
<td>Mean</td>
<td>20.92</td>
<td>23.19</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>7.41</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>347</td>
<td>100.0</td>
<td>Mean</td>
<td>23.60</td>
<td>29.62</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd</td>
<td>9.26</td>
<td>10.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean*</td>
<td>22.06</td>
<td>28.95</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sd*</td>
<td>8.68</td>
<td>10.67</td>
<td></td>
</tr>
</tbody>
</table>

* Excluding results from lecturer A.

According to Hestenes, Wells and Swackhammer (1992), a score of 60% on the FCI is the threshold for understanding Newtonian mechanics while a score of 85% is considered as mastering Newtonian force concepts. Students who score below 60% on the FCI will find it difficult to do problem solving effectively (Hestenes and Halloun 1995). Hence, the post test mean score of only 29.6% indicates a very strong Aristotelian belief and minimal understanding regarding the Newtonian concept of force and motion. The mean score is slightly higher to the mean scores found at three other universities in Malaysia (Zainal, Zaidan, Sidek and Jaafar 2006). They are University Kebangsaan Malaysia, UKM (28.5%), Universiti Teknologi Mara, UiTM (22%), and Universiti Putra Malaysia, UPM (23%). It is comparable to high school students from 14 participating schools across the United States of America (N=1113), who scored 28% on the test (Hake, 1998). Results from a similar study by Hake
show a better performance amongst college (N=597 from 16 different colleges) and university students (N=4832, from 32 different universities) with FCI scores before instruction at 39% and 44%, respectively. However, these post-test scores are well below the entry threshold of 60% and this indicates that the problem is widespread amongst students worldwide.

The average normalized gains for the courses (excluding the Physics Teaching Methods course) are \(<g> = 0.09 \) and \(<g> = 0.079 \) (including the Physics Teaching Methods Course). These gains are comparable to UKM (\(<g> = 0.08 \)), but slightly higher than UiTM (\(<g> = 0.02 \)) and UPM (\(<g> = 0.04 \)). However, it is substantially lower than the average gains from both traditionally taught courses (\(<g> = 0.23 \)) and more interactively taught courses (\(<g> = 0.48 \)) from Hake’s study. In fact, it is very low compared to any other studies that had been done (Savinainen and Scott 2002; Van Dornlen and Van Heuvelen 2002; Crouch and Mazur 2001; Wells and Swackhamer 1995). The low pretest score is not surprising but the low normalized gain for this study and at other universities in Malaysia is just a reflection of how ineffective university physics instruction is in changing students’ misconceptions on Newtonian physics. Students generally have a very strong Aristotelian belief and even after taking few courses in mechanics, their misconceptions remain unchanged.

Hake (1998) defined interactive teaching as “methods which are designed at least, in part, to promote conceptual understanding through interactive engagement of students in heads-on and hands-on activities which yield immediate feedback through discussion with peers and/or instructors”. On the other hand, traditional instructional method is a “method where there is little or no use of interactive methods (teacher-student and student-content), relying primarily on passive-student lectures, recipe labs and algorithmic-problem exams”. If we were to accept Huffman and Heller’s (1995) claim that the gain suggests the effectiveness of instruction received by the students, then the results strongly suggest that the instructions have imparted little conceptual understanding of Newtonian mechanics.

The TPAI mean score is taken as an indicator to show if the courses were taught in a traditional way or otherwise. The TPAI mean score for the lecturers teaching mechanics course in this study is 56.3% with a standard error of 2.9, with scores ranging from 49.3% to 62%. The score suggests that the lecturers are teaching in a traditional way. This result is not surprising as lecturers were asked to reflect only upon their teaching practices during lecture sessions. The average score for category 1 (facilitating the learning process) is the lowest which further suggests that the lecturers were acting more of a “sage on the stage” rather than “a guide on the side”. The result of TPAI is comparable to the result obtained from a study involving a group of forty-six nominated ‘expert’ teachers from schools throughout the United States who participated during the development of the TPAI and its companion instruments (Science Classroom Observation Rubric and Student Outcome Assessment Rubric) instrument. They scored a mean of 63.7% on the companion instrument (Science Classroom Observation Rubric) which contains subscales that are closely related to TPAI. Burry-Stock and Oxford (1994) concluded that the teachers “are not well-informed constructivists and they were not teaching at a particularly high conceptual level”. They further conclude that the nominators’ criteria of ‘expertise’ must have been very different from the ones used by TPAI. They further concluded that the nominators’ criteria of ‘expertise’ must have been very different from the ones used by TPAI. In terms of the level of competency, the scores of TPAI for the 4 lecturers involved in teaching physics put themselves in the ‘competent’ category. According to Burry-Stock, in general a competent teacher has the ability to adapt rules and goals contextually and at the same time feel a sense of responsibility for the outcome. Figure 2 illustrates each lecturer’s profile of their teaching practices.
Table 4: Distribution of FCI Scores According to Gender and Academic Performance

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Pre (%)</th>
<th>SD</th>
<th>Post (%)</th>
<th>SD</th>
<th>Normalised Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>347</td>
<td>23.60</td>
<td>9.26</td>
<td>29.62</td>
<td>10.50</td>
<td>0.079</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>79</td>
<td>28.95</td>
<td>11.1</td>
<td>35.36</td>
<td>12.50</td>
<td>0.090</td>
</tr>
<tr>
<td>Female</td>
<td>268</td>
<td>22.03</td>
<td>8.01</td>
<td>27.92</td>
<td>9.23</td>
<td>0.076</td>
</tr>
<tr>
<td>Academic Performance (CGPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00 - 4.00</td>
<td>206</td>
<td>22.77</td>
<td>9.18</td>
<td>29.84</td>
<td>10.35</td>
<td>0.091</td>
</tr>
<tr>
<td>2.50-2.99</td>
<td>121</td>
<td>24.66</td>
<td>9.20</td>
<td>28.84</td>
<td>10.10</td>
<td>0.055</td>
</tr>
<tr>
<td>2.00-2.49</td>
<td>8</td>
<td>22.08</td>
<td>4.34</td>
<td>28.33</td>
<td>8.17</td>
<td>0.080</td>
</tr>
<tr>
<td>Missing</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 shows the distribution of FCI scores based on gender and academic performance. The male students did slightly better than the female in terms of both the raw score (for pre and post tests) and the normalized gain but the difference were found to be statistically not significant at the 95% confidence limit (p = 0.389). This result is consistent with a series of studies investigating gender differences on FCI test by McCullough (2001, 2002, 2004). The studies consistently show that the male outperformed the female and led her to hypothesized that the FCI test may not be gender-fair. She created a different version of the FCI with daily-life and female-oriented contexts rather than school and male-oriented contexts. Results show that on average, women’s gain on the new version was much greater than men’s gain. She concludes that the FCI may be gender biased as the context of the test can make a difference and that it is possible to create a test that decreases the gender gap.

This study also found that the group with a higher academic performance did slightly better in the post test although the normalized gain does not show a particular trend. Even though the differences between
groups are statistically significant (p = 0.048), it makes no difference because the mean score is far below the threshold of 60%.

Figure 3 summarizes and illustrates students’ understanding which is represented by the normalized gain, g, as compared to lecturers’ perceived teaching styles (TPAI scores), gender and academic performance (CGPA score). It clearly shows the disappointingly low average normalized gain ($\langle g \rangle = 0.079$) obtained by students regardless of lecturers’ style of teaching practices (and also types of courses), gender and academic performance.

Analysis of data from the FCI test in conjunction with the use of CRI is shown in Table 5. Items listed in the table are items where 50% or more of the students answered incorrectly but their certainty response index (CRI) is 3, 4 or 5 which indicates a high degree of confidence in their answers. In a way, it can be compared to false negatives where a Newtonian-thinker chose a non-Newtonian response except in this case it is not because of carelessness. Misconceptions identified in this research parallel findings from previously cited research (e.g. Clement, 1982; Watts, 1983; McDermott, 1984)
Table 5: Items with a High % of Incorrect Answer and a High Value of CRI

<table>
<thead>
<tr>
<th>FCI item</th>
<th>Common Wrong Answer</th>
<th>Pretest (%)</th>
<th>PostTest (%)</th>
<th>Misconception Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>51</td>
<td>35</td>
<td>More massive objects always fall faster than less massive ones.</td>
</tr>
<tr>
<td>4 15</td>
<td>A C</td>
<td>81 58</td>
<td>69 69</td>
<td>When two objects are in contact, more massive objects exert a higher force on less massive objects</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>45</td>
<td>52</td>
<td>Force results in velocity rather than acceleration.</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>59</td>
<td>47</td>
<td>An object has force that it carries with it after being given an initial push and this force reduces as the object moves against gravity. Gravity near the surface of Earth increases as the object falls towards the Earth</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>57</td>
<td>67</td>
<td>Motion implies a force</td>
</tr>
<tr>
<td>30</td>
<td>E</td>
<td>64</td>
<td>69</td>
<td>An object has force that it carries with it after being given an initial push.</td>
</tr>
</tbody>
</table>

Challenges for Course Improvements

The low gain across courses should be an eye opener for lecturers to initiate a redesign of how introductory physics courses needs to be taught. There is ample evidence that physics education and cognitive science research can inform lecturers on how best to help student gain optimal understanding of physics fundamentals (Arons 1990, Mestre 1991, Hake 1992). There is also a general consensus amongst physics education researchers and educators that active-learning strategies are much more effective in promoting conceptual understanding despite some implementation problems (Hake 1998, Van Heuvelen 1991, Wells, Hestenes, Swackhamer 1995). Many research-based curriculum and instructional strategies have been developed in order to promote conceptual understanding and thus enhance problem-solving skills of the students.

Redish, in his book Teaching Physics with the Physics Suite (Redish 2002) suggested many different strategies which employed interactive learning to replace the present traditional lecture being used by the lecturers teaching mechanics courses at UPSI and at most universities in Malaysia. Large classroom classes can benefit the use of Peer Instruction/ConceptTests (Mazur 1997; Crouch and Mazur 2001) with a blend of Just-in-Time-Teaching (Novak 1999). There have been initial efforts by a few lecturers to try to implement Mazur’s Peer Instruction during lecture. Unfortunately, many students are unwilling to commit time to do their pre-reading before class. They are so comfortable in their ground state and any changes to the point of requiring them to prepare before class is considered as taking up too much of their time. Employing Interactive Lecture Demonstrations (ILDs) (Sokoloff 2001) will require much financial commitment on the department and most importantly more work on the lecturer. But at present, it is encouraging to note that the department is working to secure a grant towards setting up an “interactive-engagement lecture” supported lecture hall.

The wonderful and academic Workshop Physics (Laws 1999) which enjoyed no-lecture for calculus-based physics is indeed functional at universities in America but may not be readily accepted by faculty members and the management at UPSI and universities in Malaysia as this requires a substantial change in the curriculum and other facilities. In other words, this study shall be for academic purposes and hopefully will trigger few individuals in the physics community to appreciate the worth of physics education research as means to understand the learning problems that students are indeed facing. Solving the problem cannot be done on an individual or isolated individuals in the country, but rather commitment from the management who are serious about the education reform in this country.

Nonetheless, the results of this study clearly show that students who will be future high school teachers are themselves the propagator of non-Newtonian teaching. In other words, without a deep understanding of subject matter, their teaching would be jeopardized. Hence, it is recommended that the few lecturers who are authoring this report work closely with other physics education reformers in tailoring the existing research-based instructional strategies and implement it for the introductory physics at UPSI. The good news is, at present, although the lecture is largely traditional, the use of real time microcomputer based laboratory (Thornton and Sokoloff, 1990) has already been implemented for students’ laboratory experience. As this progress
in the upcoming semesters, the FCI diagnostics must continue to be used to monitor students’ learning (Savinaiaen and Scott 2000) and to provide formative assessment to the students and eventually to produce Newtonian high school teachers.

Conclusion

Results suggest that regardless of lecturers’ style of teaching (although most lecturers show a traditionalist tendency), academic performance (in terms of CGPA) and gender, the gain is very small and insignificant that it does not make a difference on whether students go to class or not in order to understand meaningfully the concept of force and motion. In other words, the current teaching practices at UPSI do little in terms of promoting deep understanding and overcome misconceptions of force and motion amongst students. This is totally unacceptable since studies by Hake (1998), Wells (1995), Crouch and Mazur (2001) clearly indicate a normalized gain of more than 0.2 for the traditional method and will increase to more than 0.48 if students are actively engaged in the learning process. Hence it would be worthwhile for UPSI to begin using a more interactive style of lecture to improve on the present situation.

Acknowledgement

We would like to acknowledge the funding of this research by the Universiti Pendidikan Sultan Idris, Malaysia (#04-16-50-05).

References

Arons A 1990 A Guide to Introductory Physics Teaching (John Wiley & Sons)
Huffman D and Heller P 1995 What does the Force Concept Inventory actually measure? The Physics Teacher, 33, 138-143.

INTERNATIONAL JOURNAL OF LEARNING, VOLUME 14

Redish E 2002 Teaching Physics with the Physics Suite (John Wiley & Sons)

Savinainen A and Scott P 2002 Using the Force Concept Inventory to Monitor Student Learning and to Plan Teaching Phys Educ. 37(1) 53-58

Sokoloff D and Thornton R 2001 Interactive Lecture Demonstrations (John Wiley & Sons)

Van Domelen D and Van Heuvelen A 2002 The effects of a concept-construction lab course on FCI performance Am. J. Phys. 70(7) 779-780

About the Authors

Dr Nurulhuda Abd Rahman
I've been with Universiti Pendidikan Sultan Idris (UPSI) for almost 10 years now. It is the national teaching university where its core business is to educate prospective teachers for placement in public schools throughout the country (Malaysia). I received my Ph.D from the University of Manchester, UK in the field of Physics Education with a focus on the teaching and learning particular concepts in physics that most students and teachers alike find problematic to grasp and understand fully. My research interest is investigating teachers' pedagogical content knowledge specific to understanding misconceptions in physics learning and strategies that are most likely to be fruitful in overcoming them. Thus, my interest is also on reforming the way physics is taught at the tertiary level towards a more active-learning and student centered lecture session. I'm also interested in how the teacher education programme might be redesigned to encourage the development of competent and reflective professional teachers.

Associate Prof Dr Jaafar Jantan
Universiti Teknologi Mara, Malaysia

Shahrul Kadri Ayop
Universiti Pendidikan Sultan Idris, Malaysia

Professor Dr Mohd Mustamam Abd Karim
Universiti Pendidikan Sultan Idris, Malaysia

Noor Azman Razalee
Universiti Pendidikan Sultan Idris, Malaysia

Roszairi Haron
Universiti Pendidikan Sultan Idris, Malaysia

Dr Abu Bakar Rejab
Universiti Pendidikan Sultan Idris, Malaysia
THE INTERNATIONAL JOURNAL OF LEARNING

EDITORS
Mary Kalantzis, University of Illinois, Urbana-Champaign, USA.
Bill Cope, University of Illinois, Urbana-Champaign, USA.

EDITORIAL ADVISORY BOARD
Michael Apple, University of Wisconsin-Madison, USA.
David Barton, Lancaster University, UK.
Mario Bello, University of Science, Technology and Environment, Cuba.
Robert Devillar, Kennesaw State University, USA.
Manuela du Bois-Reymond, Universiteit Leiden, Netherlands.
Ruth Finnegan, Open University, UK.
James Paul Gee, University of Wisconsin-Madison, USA.
Kris Gutierrez, University of California, Los Angeles, USA.
Roz Ivanic, Lancaster University, UK.
Paul James, RMIT University, Melbourne, Australia.
Carey Jewitt, Institute of Education, University of London, UK.
Andreas Kazamias, University of Wisconsin, Madison, USA.
Peter Kell, University of Wollongong, Australia.
Michele Knobel, Montclair State University, New Jersey, USA.
Gunther Kress, Institute of Education, University of London.
Colin Lankshear, James Cook University, Australia.
Daniel Madrid Fernandez, University of Granada, Spain.
Sarah Michaels, Clark University, Massachusetts, USA.
Denise Newfield, University of Witwatersrand, South Africa.
José-Luis Ortega, University of Granada, Spain.
Francisco Fernandez Palomares, University of Granada, Spain.
Ambigapathy Pandian, Universiti Sains Malaysia, Penang, Malaysia.
Miguel A. Pereyra, University of Granada, Spain.
Scott Poynting, University of Western Sydney, Australia.
Angela Samuels, Montego Bay Community College, Montego Bay, Jamaica.
Juana M. Sancho Gil, University of Barcelona, Spain.
Michel Singh, University of Western Sydney, Australia.
Richard Sohmer, Clark University, Massachusetts, USA.
Pippa Stein, University of Witwatersrand, South Africa.
Brian Street, King's College, University of London, UK.
Giorgos Tsiakalos, Aristotle University of Thessaloniki, Greece.
Gella Varnava-Skoura, National and Kapodistrian University of Athens, Greece.
Cecile Walden, Sam Sharpe Teachers College, Montego Bay, Jamaica.
Nicola Yelland, Victoria University, Melbourne, Australia.
Wang Yingjie, School of Education, Beijing Normal University, China.
Zhou Zuoyu, School of Education, Beijing Normal University, China.

Please visit the Journal website at http://www.Learning-Journal.com for further information:
- ABOUT the Journal including Scope and Concerns, Editors, Advisory Board, Associate Editors and Journal Profile
- FOR AUTHORS including Publishing Policy, Submission Guidelines, Peer Review Process and Publishing Agreement

SUBSCRIPTIONS
The Journal offers individual and institutional subscriptions. For further information please visit http://ijl.cgpublisher.com/subscriptions.html. Inquiries can be directed to subscriptions@commongroundpublishing.com

INQUIRIES
Email: cg-support@commongroundpublishing.com