

Thermodynamics Lecture Series

Assoc. Prof. Dr. J.J.

Combustion

Applied Sciences Education Research
Group (ASERG)
Faculty of Applied Sciences
Universiti Teknologi MARA

email: drjjlanita@hotmail.com http://www.uitm.edu.my/faculties/fsg/drjjl.html

Review - Steam Power Plant

Working fluid: Water

Purpose:

Produce work, W_{out}, ω_{out}

 $\omega_{\mathsf{net},\mathsf{out}}$

An Energy-Flow diagram for a SPP

Gas Mixtures – Composition by Moles

Composition Summary

Gravimetric Analysis

$$m_{1} + m_{2} = m_{mix}$$
 $mf_{1} + mf_{2} = 1 \text{ or } 100\%$
where $mf_{j} = \frac{m_{j}}{m_{mix}}$

Volumetric Analysis

$$N_1 + N_2 = N_{mix}$$

 $y_1 + y_2 = 1 \text{ or } 100\%$

where
$$y_i = \frac{N_i}{N_{mix}}$$

Gas Mixtures – Additive Pressure

Dalton's Law

The total pressure exerted in a container at volume V and absolute temperature T, is the sum of component pressure exerted by each gas in that container at V, T.

$$P_{mix} = P_1 + P_2$$

$$P_{mix} = \sum_{i=1}^{k} P_i \ (V_{mix}, T_{mix}); k \text{ is total number of components}$$

Gas Mixtures – Additive Volume

Amagat's Law

The total volume occupied in a container at pressure P_{mix} and absolute temperature T_{mix} , is the sum of component volumes occupied by each gas in that container at P_{mix} , T_{mix} .

$$V_{H2} + V_{O2} + V_{O2}$$

$$= V_{H2} + V_{O2}$$

$$V_{mix} = V_1 + V_2$$

 $V_{mix} = \sum_{i=1}^{k} V_i (P_{mix}, T_{mix}); k \text{ is total number of components}$

Gas Mixtures –Pressure Fraction

Partial Pressure

Since
$$P_{mix} V_{mix} = N_{mix} R_U T_{mix}$$
; $P_1 V_{mix} = N_1 R_U T_{mix}$

> The pressure fraction for each gas inside the container is

$$\frac{P_1}{P_{mix}} = \frac{N_1 R_u \frac{T}{V}}{N_{mix} R_u \frac{T}{V}} = \frac{N_1}{N_{mix}} = y_1$$

Hence the partial pressure is $P_1 = y_1 P_{mix}$

In general,
$$P_i = y_i P_{mix}$$

Gas Mixtures -Volume Fraction

Partial Volume

Since
$$P_{mix} V_{mix} = N_{mix} R_U T_{mix}$$
; $P_{mix} V_1 = N_1 R_U T_{mix}$

> The volume fraction for each gas inside the container is

$$\frac{V_1}{V_{mix}} = \frac{N_1 R_u \frac{T}{P}}{N_{mix} R_u \frac{T}{P}} = \frac{N_1}{N_{mix}} = y_1$$

Hence the partial volume is $V_1 = y_1 V_{mix}$

In general,
$$V_i = y_i V_{mix}$$

Converting gravimetric to volumetric

Mixture by weight is: 13.3% CO₂; 0.95% CO; 8.35% O₂; 77.4% N₂. Let the mixture mass be 1 kg.

Constituent	%	Mass fraction	Mass, kg	Molar mass
	By weight	$mf_i = m_i/m_{mix}$	$m_i = mf^*m_{mix}$	M _i , kg/kmol
CO ₂	13.3	0.1330	0.13	44
CO	0.95	0.0095	0.01	28
O_2	8.35	0.0835	0.08	32
N_2	77.4	0.7740	0.77	28
Total	100.00	1.0000	1.00	

Converting gravimetric to volumetric

Mixture by weight is: 13.3% CO₂; 0.95% CO; 8.35% O₂; 77.4% N₂. Let the mixture mass be 1 kg.

Constituent	# of kilomoles	Mole fraction	%
	$N_i = m_i/M_i$	$y_i = N_i/N_{mix}$	By volume
CO ₂	0.0030	0.090	9.0
СО	0.0003	0.010	1.0
O_2	0.0026	0.078	7.8
N_2	0.0276	0.822	82.2
Total	0.0336	1.00	100.0

Converting volumetric to gravimetric

Mixture by volume is: 85% C; 7% H_2 ; 5% O_2 ; 3% S. Let the mixture volume be 1 kilomole.

Constituent	%	Mole fraction	# of kilomoles	
	By volume	$y_i = N_i/N_{mix}$	$N_i = y_i^* N_{mix}$	
С	85	0.85	0.85	
H ₂	7	0.07	0.07	
O_2	5	0.05	0.05	
S	3	0.03	0.03	
Total	100.0	1.00	1.00	

Converting volumetric to gravimetric

Mixture by volume is: 85% C; 7% H_2 ; 5% O_2 ; 3% S. Let the mixture volume be 1 kilomole.

Constituent	Molar mass	Mass, kg	Mass fraction	%
	M _i , kg/kmol	$m_i = N_i^* M_i$	$mf_i = m_i/m_{mix}$	By weight
С	12	10.20	0.7907	79.1
H ₂	2	0.14	0.0109	1.09
O_2	32	1.60	0.1240	12.40
S	32	0.96	0.0744	7.44
Total	111	12.90	1.0000	100.00