NAME: _____________________________ KP UiTM: ________________
Handphone #: ___________

TEST 3—— Oct 28th 2008

Answer ALL questions ON the paper provided to you. DO NOT USE ADDITIONAL PAPERS.

QUESTION 1

a) Figure 1a and Figure 1b show current loops in a magnetic field while Figure 1c shows a wire loop where current is induced due to the moving bar.
(i) Draw the induced current in Figure 1a. Then label the high and low potential end on the resistor. Explain how you determined the current direction.
(ii) Obtain the emf induced in the coil shown in Figure 1b. Then determine the amount of change of B in one second, \(\Delta B / \Delta t \). If this change were a positive change (increasing), determine the direction of the induced current. Explain how you arrive at your answer.
(iii) Draw or indicate the magnetic field direction, the polarity of the induced emf, the direction of the electric force and the direction of the magnetic force on the charges in the sliding bar shown in Figure 1c. Explain why the induced current is in the direction shown.

Figure 1a: A single turn conducting loop of resistance \(R \) in a magnetic field which is increasing at a steady rate.

Figure 1b: A 100-turns conducting coil with a surface area of \(8 \times 10^{-4} \) m\(^2\) and resistance \(R = 10 \) \(\Omega \) in a B field as shown produced an induced current of \(4 \times 10^{-3} \) A.

Figure 1c: Induced current \(I \), shown due to a conducting bar moves to the left at a constant speed \(v \) on two conducting rails.

(6+14+11 = 31 marks)
QUESTION 2 (Use Planck’s constant \(h = 6.6 \times 10^{-34} \text{ J.s} \), speed of light is \(c = 3 \times 10^8 \text{ m/s} \) and the charge of an electron \(e = 1.6 \times 10^{-19} \text{ C} \) wherever it is required)

a) Briefly, explain the following:
 i) wave-particle-duality,
 ii) Paschen series and
 iii) Heisenberg Uncertainty Principle
 iv) Rutherford’s scattering

 (4+4+4+4=16 marks)

b) A hydrogen atom is in its 3\(^{rd}\) excited state. When the atom returns to its ground state (note that the ground state energy of a hydrogen atom is -13.6 eV), it emits two photons.
 i) Draw the atomic states and label the states. Make sure you label the ground and the different excited states.. (the n=1, n=2, n=3…..)
 ii) Calculate the energy for each of the states and use \(E_0 \) to represent energy of the ground state and \(E_n \) (such as \(E_1 \) for energy of the first excited state) to represent energy of the excited states.
 iii) Draw the energy emission process you had chosen by showing the emitted photons
 iv) Determine the wavelength for each of the photons emitted.

 (4+5+2+8 = 19 marks)

STAY COOL & DO NOT COPY