Course Information

Confidential

<table>
<thead>
<tr>
<th>Code</th>
<th>PHY407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Physics II</td>
</tr>
<tr>
<td>Level</td>
<td>Degree</td>
</tr>
<tr>
<td>Credit Unit</td>
<td>3</td>
</tr>
<tr>
<td>Contact Hour/SLT</td>
<td>F2F-(5hrs-workshop)</td>
</tr>
<tr>
<td>Part</td>
<td>2</td>
</tr>
<tr>
<td>Course Status</td>
<td>Core</td>
</tr>
<tr>
<td>Prerequisite</td>
<td>None</td>
</tr>
<tr>
<td>Course Outcomes</td>
<td>Upon completion of this course, students will be able to:</td>
</tr>
</tbody>
</table>

1. Explain the concepts, laws and theories in electrostatics, electricity and magnetism using either or a combination of the qualitative, visual and quantitative approach. (LO1-C2)

2. Observe, predict, conduct and discuss results of scientific investigations in areas of electrostatics and electricity. (LO2-P3)

3. Collaborate with team members in team-related assessment tasks. (LO5-TS3)

Course Description:

This course will interactively engage students cognitively and scientifically in areas of electrostatics, electricity, magnetism, atomic physics and modern physics. Students will define concepts, state and explain laws and theories, make predictions as to the possible outcome of an event, perform investigations via simulations and laboratory exercises and verbally and in writing, discuss the results and relationships with peers and facilitators. The designated lecture session is used to discuss results of investigations leading to its relation to the existing laws, principles or theories. Lecture sessions employ a mixture of lectures and active learning (self and peer discussions). The outcomes shall be assessed through a
variety of tools which include the traditional paper examination, concept maps, inventories (CSEM), informal interviews and classroom engagement.

Syllabus Content

1.0 Introduction: Diagnostics and Learning Skills
 1.1 Learning Styles & Views on Science.
 1.2 Conceptual Survey in Electricity & Magnetism.
 1.3 Concept Mapping.

2.0 Electrostatics
 2.1 Charged objects and electric (Coulomb’s) force.
 2.2 Properties of conductors and insulators.
 2.3 Charging by contact, induction and friction.

 Lab 1:
 PHET simulation “Balloons & Static Electricity”
 Lab Investigation: “Introduction to Static Electricity”.

3.0 Electrostatics
 3.1 Coulomb’s Law.
 3.2 Electric Field.
 3.3 Electrical field lines.
 3.4 Electrical field in conductors.

 Lab 2:
 PHET simulation
 i. “Electric Field Hockey,”
 ii. “Vector-Math”
 iii. “Charges and Fields”.
 Lab Investigation: “Electrical Force & Electrical Field”.

4.0 Electric Potential Energy, Electric Potential and Capacitance
 4.1 Potential energy
 4.2 Electric potential difference
 4.3 Electric potential difference created by point charges
 4.4 Capacitors and dielectrics
 4.5 Capacitors in series and parallel
 4.6 RC circuits
 4.7 Charged objects and electric force

 Lab 3:
PHET simulation
 i. “Electric Field Hockey,”
 ii. “Charges and Fields”.
Lab Investigation: “Introduction to Electric Potential”.

5.0 Resistance, Resistivity & Ohm’s Law
 5.1 Electromotive force and current
 5.2 Ohm’s law
 5.3 Resistance and resistivity
 5.4 Electric power
 5.5 Series and parallel wiring
 5.6 Circuits wired partially in series and partially in parallel

Lab 4:
Lab Investigation: “Capacitors, Capacitance, Series & Parallel Circuit”.

6.0 Electric Circuits & Kirchoff’s Laws
 6.1 internal resistance
 6.2 Kirchoff’s laws
 6.3 the measurement of current and voltage

Lab 5:
PHET simulation: “Circuit Construction Kit (DC Only)”

7.0 Magnetic Field & Magnetic Forces
 7.1 Magnetic field lines of permanent magnets.
 7.2 Magnetic force that a magnetic field exerts on moving charges.
 7.3 Motion of a charged particle in a magnetic field.
 7.4 Motion of charges in magnetic & electric fields.
 7.5 Mass spectrometer & velocity selectors.
 7.6 Force on a current-carrying conductor in a magnetic field.

Lab 6:
PHET simulation: “Circuit Construction Kit (DC Only)”
Lab Investigation: “Resistance, Ohm’s Law & Kirchoff’s Law”.

© Hak Cipta Universiti Teknologi MARA

Nama Fakulti / Pusat Pengajian: Fakulti Sains Gunaan Tahun: 2009
Nama Program: Ijazah Sarjana Muda Sains (Kepujian) Teknologi Bahan

FSG-3
8.0 Magnetic force on current-carrying conductors &
magnetic field produced by current-carrying conductors
8.1 Torque on a current-carrying coil.
8.2 Electric motors.
8.3 Magnetic fields infinitely long wire.
8.4 Magnetic field produced at the centre of circular
wires.
8.5 Magnetic field of solenoids.
8.6 Force between current-carrying wires.

Lab 7:
PHET simulation: “Faraday’s Electromagnetic Lab”
Lab Investigation: “Magnetic Field & Magnetic
Force on Electric Charges”.

9.0 Electromagnetic Induction
9.1 Magnetic flux
9.2 Faraday’s Law of electromagnetic induction
9.3 Motional emf
9.4 Lenz’s Law of electromagnetic Induction

10.0 Electric Generators, Inductors and Transformers
10.1 Induced current in coils moving in magnetic field.
10.2 Electric generators.
10.3 Self and Mutual Inductance
10.4 Transformers.

Instructional Strategy: Predict → Observe → Do → Synthesize (PODS) Cycle
Active Learning
Instructional Methods: Workshop, interactive
lecture, labs and
Cooperative group
discussion

i. Scientific investigation via simulations and laboratories
experiences.
ii. Active engagement via lecture-discussion & cooperative
group discussion.
iii. Critical assessment of findings.
iv. Synthesising of results with existing laws, theories and
principles.
Assessment: Continuous Assessment (Formative & Summative): 70%

CLO1: Cognitive Assessment Tasks 30%
- Formative: 2 Concept Maps
- Formative: Quizzes
- Summative: Two tests 2x10%=20%
- Summative: Assignment 10%

CLO2: Practical Skills Assessment Tasks 30%
- Formative: 3 Lab Journals
- Summative: 2 Lab Journals 10%
- Summative: Lab Performance Exam (skill 20%)

CLO3: Team work 10%
CLO1: Final exam 30%

Recommended Text (if any): Physics by Cutnell & Johnson 7th edition (algebra based); John Wiley &Sons, Inc.

COURSE OUTCOMES

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>PHY407</th>
<th>CENTRE OF STUDY</th>
<th>FACULTY OF APPLIED SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME</td>
<td>PHYSICS II</td>
<td>PREPARED BY</td>
<td>ASSOC. PROF. DR. JAAFAR JANTAN</td>
</tr>
<tr>
<td>CREDIT HOURS</td>
<td>3</td>
<td>DATE</td>
<td>15th MAY 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE OUTCOMES</th>
<th>PROGRAMME OUTCOMES</th>
<th>Teaching & Learning Activities</th>
<th>Assessment Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO 1 PO 1</td>
<td>LO 2 PO 2</td>
<td>LO 3 PO 3</td>
<td>LO 4 PO 4</td>
</tr>
<tr>
<td>1. Explain the concepts, laws and theories in electrostatics, electricity and magnetism using either or a combination of the qualitative, visual and quantitative approach. (LO1-C2)</td>
<td>3</td>
<td>a. Independent Learning (pre-class reading)</td>
<td>Diagnostic Test (CSEM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Lecture-discussion</td>
<td>Formative Tasks: (Concept Mapping, Quiz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Simulations</td>
<td>Summative Tasks: Tests, Final Exam)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Active learning (self & peer dialogue)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Modelling</td>
<td></td>
</tr>
</tbody>
</table>

LO 1 PO 1	LO 2 PO 2	LO 3 PO 3	LO 4 PO 4	LO 5 PO 5	LO 6 PO 6	LO 7 PO 7	LO 8 PO 8	LO 9 PO 11
2. Observe, predict, conduct and discuss results of scientific	3	a. Independent Learning (pre-class reading)	Lab Journal					
			Lab Examination					

Nama Fakulti / Pusat: Fakulti Sains Gunaan
Nama Program: Ijazah Sarjana Muda (Kepujian) Teknologi Bahan
Tahun: 2009

© Hak Cipta Universiti Teknologi MARA
<table>
<thead>
<tr>
<th>COURSE OUTCOMES</th>
<th>PROGRAMME OUTCOMES</th>
<th>Teaching & Learning Activities</th>
<th>Assessment Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO 1 PO 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 2 PO 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 3 PO 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 4 PO 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 5 PO 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 6 PO 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 7 PO 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 8 PO 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 9 PO 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO 10 PO 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>investigations in areas of electrostatics and electricity. (LO2-P3)</td>
<td></td>
<td>b. Active learning (self & peer dialogue)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Simulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Lab investigations</td>
<td></td>
</tr>
<tr>
<td>3. Collaborate with team members in team-related assessment tasks. (LO5-TS3)</td>
<td>3</td>
<td>a. Active learning (self & peer dialogue) in lab & classroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Lab Presentation</td>
<td></td>
</tr>
</tbody>
</table>

Program Outcomes:

PO1 (LO1) Able to analyze problems by applying knowledge and understanding of laws, theories and principles of science and mathematics.

PO2 (LO2) Able to safely prepare sample, operate and use laboratory equipments.

PO3 (LO2, LO3) Able to identify problems, design an experiment, process, interpret and analyze experimental data.

PO4 (LO3) Able to apply the scientific reasoning in solving authentic problems.

PO5 (LO4) Able to verbally express and articulate scientific ideas effectively.

PO6 (LO4) Able to express and articulate scientific ideas in written form.

PO7 (LO5) Able to effectively work in a multidisciplinary team.

PO8 (LO6) Able to apply values, ethics, morality and professionalism in their scientific pursuit.

PO9 (LO7) Able to manage information and engage in life-long learning.

PO10 (LO8) Able to apply managerial and entrepreneurial skills.

PO11 (LO9) Able to demonstrate leadership skills.