Chapter 24 & 26

Electromagnetic Waves & Wave Properties

16.1 The Nature of Waves

1. A wave is a traveling disturbance.

2. A wave carries energy from place to place.

Waves travel to the right: \(y = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{v} \right) = A \sin \left(t - \frac{x}{\lambda} \right) \)

Waves travel to the left: \(y = A \sin 2\pi \left(\frac{x}{\lambda} + \frac{t}{v} \right) = A \sin \left(t + \frac{x}{\lambda} \right) \)

16.2 Periodic Waves

Mathematical description of a traveling wave

\[y = A \sin \left(\frac{t}{T} \right) \Rightarrow \lambda = \frac{v}{f} \]

Example 1 The Wavelengths of Radio Waves

AM and FM radio waves are transverse waves consisting of electric and magnetic field disturbances traveling at a speed of 3.00\times 10^8 \text{ m/s}. A station broadcasts AM radio waves whose frequency is 1230 \times 10^3 \text{ Hz} and an FM radio wave whose frequency is 91.9 \times 10^6 \text{ Hz}. Find the distance between adjacent crests in each wave.

\[\lambda_{\text{AM}} = \frac{v}{f_{\text{AM}}} = \frac{3.00 \times 10^8 \text{ m/s}}{1230 \times 10^3 \text{ Hz}} = 244 \text{ m} \]

\[\lambda_{\text{FM}} = \frac{v}{f_{\text{FM}}} = \frac{3.00 \times 10^8 \text{ m/s}}{91.9 \times 10^6 \text{ Hz}} = 3.26 \text{ m} \]

24.2 The Electromagnetic Spectrum

Conceptual Example 2 The Diffraction of AM and FM Radio Waves

Diffraction is the ability of a wave to bend around an obstacle or the edges of an opening. Would you expect AM or FM radio waves to bend more readily around an obstacle such as a building?
24.1 The Nature of Electromagnetic Waves

Two straight wires connected to the terminals of an AC generator can create an electromagnetic wave.

Only the electric wave traveling to the right is shown here.

24.1 The Nature of Electromagnetic Waves

A radio wave can be detected with a receiving antenna wire that is parallel to the electric field.

24.1 The Nature of Electromagnetic Waves

The current used to generate the electric wave creates a magnetic field.

24.1 The Nature of Electromagnetic Waves

With a receiving antenna in the form of a loop, the magnetic field of a radio wave can be detected.

24.1 The Nature of Electromagnetic Waves

This picture shows the wave of the radiation field far from the antenna.

The speed of an electromagnetic wave in a vacuum is:

\[c = 3.00 \times 10^8 \text{ m/s} \]

24.2 The Electromagnetic Spectrum

Like all waves, electromagnetic waves in vacuum have a wavelength and frequency, related by:

\[c = f \lambda \]

In other medium, the speed \(v \) is less than in vacuum, \(v < c \), but the frequency remains the same:

\[v = f \lambda \]

DR JJ UiTM-Cutnell & Johnson 7th ed.
24.2 The Electromagnetic Spectrum

Example 1 The Wavelength of Visible Light

Find the range in wavelengths for visible light in the frequency range between 4.0×10^{14} Hz and 7.9×10^{14} Hz.

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{4.0 \times 10^{14} \text{ Hz}} = 7.5 \times 10^{-7} \text{ m} = 750 \text{ nm}$$

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{7.9 \times 10^{14} \text{ Hz}} = 3.8 \times 10^{-7} \text{ m} = 380 \text{ nm}$$

24.3 The Speed of Light

The speed of light in a vacuum

$$c = 299,792,458 \text{ m/s}$$

Maxwell’s prediction of the speed of light

$$c = \frac{1}{\sqrt{\frac{c}{\mu_0}}} = \sqrt{\frac{1}{8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}}} = 3.00 \times 10^8 \text{ m/s}$$

24.4 The Energy Carried by Electromagnetic Waves

The total energy density carried by an electromagnetic wave

$$u = \frac{\text{Total energy}}{\text{Volume}} = u_E + u_B = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2} \mu_0 B^2$$

But $u_E = u_B$:

$$\frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \mu_0 B^2$$

So, total u is:

$$u = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2} \mu_0 B^2 = \varepsilon_0 E^2 = \frac{1}{\varepsilon_0} B^2$$

Hence $E^2 = c^2 B^2$ or $E = c B$

Since E & B are sinusoidal

$$E_{rms} = E_0 \frac{1}{\sqrt{2}}$$

Thus

$$B_{rms} = B_0 \frac{1}{\sqrt{2}}$$

24.4 The Energy Carried by Electromagnetic Waves

Electromagnetic waves, like water waves, carry energy.

Chapter 26

Index of Refraction
26.1 The Index of Refraction

Light travels through a vacuum at a speed \(c = 3.00 \times 10^8 \text{ m/s} \). Light travels through materials at a speed less than its speed in a vacuum.

DEFINITION OF THE INDEX OF REFRACTION

The index of refraction of a material is the ratio of the speed of light in a vacuum to the speed of light in the material:

\[
\eta = \frac{\text{Speed of light in vacuum}}{\text{Speed of light in the material}}
\]

\[
c = f\lambda = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}\quad \text{In other medium, the speed } v \text{ is less than in vacuum. (} v < c) \text{, but the frequency remains the same}
\]

26.2 Snell’s Law and the Refraction of Light

SNELL’S LAW

Light wave bend (direction change) when entering medium of different index of refraction.

SNELL’S LAW OF REFRACTION

When light travels from a material with one index of refraction to a material with a different index of refraction, the angle of incidence is related to the angle of refraction by:

\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]

THE DERIVATION OF SNELL’S LAW

\[
\sin \theta_1 = \frac{\lambda_1}{h} \quad \sin \theta_2 = \frac{\lambda_2}{h}
\]

But \(f\lambda_1 = c; f\lambda_2 = v; n = \frac{c}{v} \)

\[
\sin \theta_1 \sin \theta_2 = \frac{n_1 \lambda_1}{h} \cdot \frac{n_2 \lambda_2}{h}
\]

So, \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)

Example 1 Determining the Angle of Refraction

A light ray strikes an air/water surface at an angle of 46 degrees with respect to the normal. Find the angle of refraction when the direction of the ray is (a) from air to water and (b) from water to air.
26.2 Snell’s Law and the Refraction of Light

(a) \(\sin \theta_1 = \frac{n_2 \sin \theta_2}{n_1} = \frac{1.00 \sin 46^\circ}{1.33} = 0.54 \)

\(\theta_1 = 33^\circ \)

(b) \(\sin \theta_2 = \frac{n_2 \sin \theta_2}{n_1} = \frac{1.33 \sin 46^\circ}{1.00} = 0.96 \)

\(\theta_2 = 74^\circ \)

Example 2 Finding a Sunken Chest

The searchlight on a yacht is being used to illuminate a sunken chest. At what angle of incidence should the light be aimed?

\(\theta_2 = \tan^{-1}\left(\frac{2.0}{3.3}\right) = 31^\circ \)

\(\sin \theta_1 = \frac{n_2 \sin \theta_2}{n_1} = \frac{1.33 \sin 31^\circ}{1.00} = 0.69 \)

\(\theta_1 = 44^\circ \)