Electric Force & Electric Field

A negatively charged object is brought near to a neutral, conducting sphere. Electrons in the sphere are forced from the left side of the sphere to the right side.
Charges, charging, electrical force & discharging

Two neutral conducting spheres are touching one another, thus allowing for the free movement of electrons between them.

Charge Conservation

Shown are conducting spheres each of charges 5q, -3q and 5q

What is the total charge on the spheres?

Sphere A touches sphere B and then separated.

After the process above, what is the total charge & the charge on each individual sphere?
Charge Conservation

Shown are conducting spheres each of charges 5q, -3q and 5q
What is the total charge on the spheres?
Sphere B touches sphere C and then separated.
After the process above, what is the total charge & the charge on each individual sphere?

Charge Conservation

Shown are conducting spheres each of charges 7q, -3q and -4q
What is the total charge on the spheres?
Sphere A touches sphere B and then separated.
After the process above, what is the total charge & the charge on each individual sphere?
Charge Conservation

Shown are conducting spheres each of charges 2q, 2q and -4q.

What is the total charge on the spheres?

Sphere B touches sphere C and then separated.

After the process above, what is the total charge & the charge on each individual sphere?

PHY407
Lecture 2: Electrical force & Electrical Field

Why do things fall to the ground???

The gravitational field surrounding a clump of mass such as the earth. On earth, the gravitational field is \(g = \frac{F}{m} \), where \(m \) is the object's mass.

Objects don’t fall, but are attracted to the center of the earth due to the presence of gravitational field, \(g \).
Why do things fall to the ground???

The gravitational fields of the earth and moon superpose. Note how the fields cancel at one point, and how there is no boundary between the interpenetrating fields surrounding the two bodies.
Activity 1-Electrical (Coulomb) Force

- Electrons move towards proton
- Far electrons feel small pull, hence small initial acceleration
- As the electrons accelerate and get closer, the pull gets stronger.
- Near electrons feel strong pull, hence big initial acceleration.
- Electrons feel the pull because they are in an electric field created by the proton.

Activity 1-Electrical (Coulomb) Force

- Electrons move away from negative particle
- Far electrons feel small push, hence small initial acceleration
- As the electrons accelerate and get further, the push gets weaker.
- Near electrons feel strong push, hence big initial acceleration.
- Electrons feel the push because they are in an electric field created by the negative particle.
PHY407
Lecture 2: Introduction
Activity 1-Electrical (Coulomb) Force on central electron

- Right electron push central electron to the left.
- Left electron push central electron to the right.
- Top electron push central electron to the bottom.
- Bottom electron push central electron to the top.

Activity 1-Electrical (Coulomb) Force

- Right electron pull central proton to the right.
- Left electron pull central proton to the left.
- Top electron pull central proton to the top.
- Bottom electron pull proton to the bottom.
PHY407
Lecture 2: Introduction

Activity 1-Electrical (Coulomb) Force

• Right electron pushes central electron to the left.
• Left electron pushes central electron to the right with a smaller force than the electron on the right.
• Top electron pushes central electron to the bottom with the same force that the left electron exerts on the central electron.
• Top left corner electron pushes central electron to the bottom right corner.

• Right electron pulls the proton to the right.
• Left electron pulls the proton to the left with a smaller force than the electron on the right.
• Top electron pulls the proton up with the same force that the left electron exerts on the central electron.
• Top left corner electron pulls the proton to the top left corner.
Activity 2-Resultant Force

PULLING of PROTON

- Sum of force to the right (+ve) is equal to the sum of the force to the left (-ve).
- Sum of force to the top (+ve) is equal to the sum of the force to the bottom (-ve).
- Top electron push central electron to the bottom.
- Bottom electron push central electron to the top.

PUSHING of ELECTRON

- Sum of force to the right (+ve) is equal to the sum of the force to the left (-ve).
- Sum of force to the top (+ve) is equal to the sum of the force to the bottom (-ve).
PHY407
Lecture 2: Introduction

Activity 2-Resultant Force
- Break the forces into its x and y components. Use trigonometry to find the values.
- Then add up all the +ve & the –ve x components to get the sum of forces along the x.
- Add up all the +ve & the –ve y components to get the sum of forces along the y.
- Use Pythagoras theorem to determine the magnitude of the resultant force.
- Use trigonometry to find the direction

\[F^2 = F_x^2 + F_y^2 \]
\[\tan \Phi = \frac{F_y}{F_x} \]

PHY407
Lecture 2: Introduction

Activity 1-Electrical (Coulomb) Force
- Right electron pulls the proton to the right.
- Left electron pulls the proton to the left with a smaller force than the electron on the right.
- Top electron pulls the proton up with the same force that the left electron exerts on the central electron.
- Top left corner electron pulls the proton to the top left corner.